A Study of the Influence of Speech Type on Automatic Language Recognition Performance
نویسندگان
چکیده
Automatic language recognition on spontaneous speech has experienced a rapid development in the last few years. This development has been in part due to the competitive technological Language Recognition Evaluations (LRE) organized by the National Institute of Standards and Technology (NIST). Until now, the need to have clearly defined and consistent evaluations has kept some real-life application issues out of these evaluations. In particular, all past NIST LREs have used exclusively conversational telephone speech (CTS) for development and test. Fortunately this has changed in the current NIST LRE since it includes also broadcast speech. However, for testing only the telephone speech found in broadcast data will be used. In real-life applications, there could be several more types of speech and systems could be forced to use a mix of different types of data for training and development and recognition. In this article, we have defined a test-bed including several types of speech data and have analyzed how a typical language recognition system works using different types of speech, and also a combination of different types of speech, for training and testing.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملOn the Relationship between Emotional Intelligence and Directive Speech Acts Preference
Language and emotion are two related systems in use, in that one system (emotions) impacts the performance of the other (language). Both of them share their functionality in communication. Since the nature of foreign language classrooms is ideally interactional, emotional intelligence (EI) gains importance. The aim of this study was to find out whether one's total emotional quotient and its com...
متن کاملDesigning and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods
For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملStatistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language
Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010